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Abstract: Ring constructions through intramolecular trapping of anions generated in charge- 
directed conjugate addition reactions are reported. Intramolecular reactions of internal 

nucleophiles including Grignard reagents are also described. 

We recently reported that certain readily prepared ylide derivatives (A) of a,+unsaturated 

acids undergo charge-directed conjugate addition reactions with a variety of nucleophiles to 

give intermediate anions which further react with electrophiles (eq. l).l We now wish to 

report applications of this approach to the formation of 5- and 6aembered rings. 
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&, Z = -C(PPh3)COOEt 

While a cycloalkylation reaction involving the intramolecular trapping of an enolate 

generated by the addition of an organocopper reagent to an a,S-unsaturated cyclohexenone deriva- 

tive has been recently reported, 
2 

the poor yield, owing in part to the low reactivity of such 

enolates. 
3 

and the narrow range of nucleophiles which undergo conjugate addition reactions as 

Gilman reagents4 severely limit this approach. We find that the anionic intermediates $, (M = 

Li) which result from the addition of nucleophiles to w-halo unsaturated ylides z5 cyclize to 

give carbocyclic ylides t6 as shown in eq. 2. Results using a variety of nucleophiles to 
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initiate these ring closures are shown in Table 1. 

The use of nucleophiles not ordinarily useful in conjugate addition reactions via organo- 

cuprates is especially noteworthy (entries 4, 5 and 9). Reactions are conducted in general by 

the addition of a slight excess of the nucleophile to solutions of ,?, in THF at -78' followed by 

warming to induce cyclization. In cases leading to S-membered ring formation, cyclization of 

& is complete in several minutes at 0' even when X = Cl. The intermediate anion $8 (X = Cl) 
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Table 1. Cycloalkylation Reactions of ,3 and Nucleophiles (equation 2) 

Entry Ylide Nucleophile Product 56 Yield (%) 

1 3a, X q Cl MeLi -1 

2 PhLi 

(CH3)3CLi 

6 3b, X = Cl PhLi 

7 3b, X = I --. 

8 3b, X = Cl MeLi _- 

9 (PhS)$HLi 

,\t co2 

9 82 

ke 

90 

, \\ co2 

9 72 

C(CH3)3 

SPh 

95 

,,\coz 

9 90 

COOC(CH,), 

Ph 

SPh 

70 

79 

60 

84 



No. 24 2201 

may be intercepted, however, at low temperatures. Treatment of & (X = Cl) with MeLi at -78' 

followed by the addition of water gives the saturated uncyclized ylide & (M = H) in 68% yield. 

Cyclizations of $& (X = Cl) leading to cyclohexyl derivatives are much slower, however, requir- 

ing in general 2 hr at 55" for completion. Cyclizations are substantially faster when the 

leaving group is iodide (s, X = I) with ring closures being essentially complete in 15 min at 

25' (entry 7). 

While in all cases observed to date nucleophilic additions to the double bond of 2 have 

been faster than any competing process involving the terminal electrophile, in cases where 

subsequent cyclization is slow (&) alkylation of any excess nucleophile may occur thereby 

precluding cyclization. For example, treatment of & (X = Cl) with 2 equivalents of bis(phenyl- 

thio)methyllithium (25", 1 hr) gives, after protonation, a mixture of bis-thioacetal $& [X = 

Nu = (PhS)2CH-, M = H] and uncyclized adduct $J, [Nu = (PhS)2CH-, X = Cl, M = H] in 44 and 38% 

yield, respectively. No difficulties are encountered in the absence of excess nucleophile 

(entry 9). 

In all cases nearly exclusive formation of the trans isomer of 1 is observed suggesting a 

high preference for closure of ft in a manner involving attack of the internal electrophile from 

the face of the nucleophilic u-carbon least encumbered by the S-substituent, Nu. Authentic cis - 

isomers (vide infra) were not isomerized to e-5 under the reaction conditions. -- 

In nearly all cases 2 could also be obtained by the addition of the same nucleophiles to 

the corresponding cyclic unsaturated ylide k (eq. 3). Protonation of the anions J, generated in 

coz N”’ 

- %-c/t (3) 
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this manner under non-equilibrating conditions invariably gave rise to 2 as a separable mixture 

of cis and trans isomers. 7 -- 

Finally, we have investigated annelations resulting from the intramolecular conjugate 

addition reactions of internally generated nucleophilic centers (eq. 4). Treatment of ,g$ and 
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Qk (X = I) with magnesium in THF at 25" gives after protonation cyclic ylides 2% and a (X = Y = 

H) in 60% and 59% yield, respectively. These reactions presumably proceed through the formation 

of an intermediate Crignard reagent t (X = MgI) which cyclizes to 2 (x = H, Y = MgI). 
8 

These 
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reactions are to our knowledge the first examples of uncatalyzed intramolecular conjugate 

addition reactions of internally generated Grignard reagents. Ring formation through the intra- 

molecular addition of a stabilized carbanionic center has also been demonstrated. Treatment of 

$Q (X = CN) with lithium tetramethylpiperidide gives after protonation 23 (X = CN, Y = H) in 

67% yield as a variable mixture of separable cis-trans isomers. It is as yet unclear whether 

isomer formation is inherent in the cyclization process or occurs as a result of an equilibra- 

tion or other proton transfer process involving the cyano-substituted center. In any event, 

treatment of either cis-2 or a cis-trans mixture with NaOMe-MeOH results in the formation of -- 

predominately trans-8. 
-?, 

Other novel ring-forming processes made possible by conjugate addition reactions to 

carbonyl-deactivated systems are presently under study. 
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